Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33199011

RESUMEN

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Asunto(s)
Ecosistema , Incendios , Carbono , Ciclo del Carbono , Suelo , Humedales
2.
New Phytol ; 217(1): 16-25, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29076547

RESUMEN

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Asunto(s)
Genoma de Planta/genética , Genómica , Modelos Biológicos , Sphagnopsida/genética , Adaptación Fisiológica , Evolución Biológica , Ecología , Filogenia , Análisis de Secuencia de ADN , Sphagnopsida/citología , Sphagnopsida/fisiología
3.
Ecology ; 91(8): 2344-55, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20836456

RESUMEN

Spatial patterning of ecosystems can be explained by several mechanisms. One approach to disentangling the influence of these mechanisms is to study a patterned ecosystem along a gradient of environmental conditions. This study focused on hummock-hollow patterning of peatlands. Previous models predicted that patterning in drainage-dominated peatlands is driven by a peat-accumulation mechanism, reflected by higher nutrient availability in hollows relative to hummocks. Alternatively, patterning in evapotranspiration (ET)-dominated peatlands may be driven by a nutrient-accumulation mechanism, reflected by reversed nutrient distribution, namely, higher nutrient availability in hummocks relative to hollows. Here, we tested these predictions by comparing nutrient distributions among patterned peatlands in maritime (Scotland), humid temperate (Sweden), and humid continental (Siberia) climates. The areas comprise a climatic gradient from very wet and drainage-dominated (Scotland) to less wet and ET-dominated (Siberia) peatlands. Nutrient distribution was quantified as resource contrast, a measure for hummock-hollow difference in nutrient availability. We tested the hypothesis that the climatic gradient shows a trend in the resource contrast; from negative (highest nutrient availability in hollows) in Scotland to positive (highest nutrient availability in hummocks) in Siberia. The resource contrasts as measured in vegetation indeed showed a trend along the climatic gradient: contrasts were negative to slightly positive in Scotland, positive in Sweden, and strongly positive in Siberia. This finding corroborates the main prediction of previous models. Our results, however, also provided indications for further model development. The low concentrations of nutrients in the water suggest that existing models could be improved by considering both the dissolved and adsorbed phase and explicit inclusion of both nutrient-uptake and nutrient-storage processes. Our study suggests that future climate change may affect the ecosystem functioning of patterned peatlands by altering the contribution of pattern-forming mechanisms to redistribution of water and nutrients within these systems.


Asunto(s)
Clima , Ecosistema , Plantas/clasificación , Suelo , Escocia , Siberia , Suecia , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...